Keys to Lipid Selection in Fatty Acid Amide Hydrolase Catalysis: Structural Flexibility, Gating Residues and Multiple Binding Pockets

نویسندگان

  • Giulia Palermo
  • Inga Bauer
  • Pablo Campomanes
  • Andrea Cavalli
  • Andrea Armirotti
  • Stefania Girotto
  • Ursula Rothlisberger
  • Marco de Vivo
چکیده

The fatty acid amide hydrolase (FAAH) regulates the endocannabinoid system cleaving primarily the lipid messenger anandamide. FAAH has been well characterized over the years and, importantly, it represents a promising drug target to treat several diseases, including inflammatory-related diseases and cancer. But its enzymatic mechanism for lipid selection to specifically hydrolyze anandamide, rather than similar bioactive lipids, remains elusive. Here, we clarify this mechanism in FAAH, examining the role of the dynamic paddle, which is formed by the gating residues Phe432 and Trp531 at the boundary between two cavities that form the FAAH catalytic site (the "membrane-access" and the "acyl chain-binding" pockets). We integrate microsecond-long MD simulations of wild type and double mutant model systems (Phe432Ala and Trp531Ala) of FAAH, embedded in a realistic membrane/water environment, with mutagenesis and kinetic experiments. We comparatively analyze three fatty acid substrates with different hydrolysis rates (anandamide > oleamide > palmitoylethanolamide). Our findings identify FAAH's mechanism to selectively accommodate anandamide into a multi-pocket binding site, and to properly orient the substrate in pre-reactive conformations for efficient hydrolysis that is interceded by the dynamic paddle. Our findings therefore endorse a structural framework for a lipid selection mechanism mediated by structural flexibility and gating residues between multiple binding cavities, as found in FAAH. Based on the available structural data, this exquisite catalytic strategy for substrate specificity seems to be shared by other lipid-degrading enzymes with similar enzymatic architecture. The mechanistic insights for lipid selection might assist de-novo enzyme design or drug discovery efforts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for distinct roles in catalysis for residues of the serine-serine-lysine catalytic triad of fatty acid amide hydrolase.

Fatty acid amide hydrolase (FAAH) is a mammalian amidase signature enzyme that inactivates neuromodulatory fatty acid amides, including the endogenous cannabinoid anandamide and the sleep-inducing substance oleamide. The recent determination of the three-dimensional structures of FAAH and two distantly related bacterial amidase signature enzymes indicates that these enzymes employ an unusual se...

متن کامل

Clarifying the catalytic roles of conserved residues in the amidase signature family.

Fatty acid amide hydrolase (FAAH) is a mammalian integral membrane enzyme responsible for the hydrolysis of a number of neuromodulatory fatty acid amides, including the endogenous cannabinoid anandamide and the sleep-inducing lipid oleamide. FAAH belongs to a large class of hydrolytic enzymes termed the "amidase signature family," whose members are defined by a conserved stretch of approximatel...

متن کامل

X-ray crystallographic analysis of alpha-ketoheterocycle inhibitors bound to a humanized variant of fatty acid amide hydrolase.

Three cocrystal X-ray structures of the alpha-ketoheterocycle inhibitors 3-5 bound to a humanized variant of fatty acid amide hydrolase (FAAH) are disclosed and comparatively discussed alongside those of 1 (OL-135) and its isomer 2. These five X-ray structures systematically probe each of the three active site regions key to substrate or inhibitor binding: (1) the conformationally mobile acyl c...

متن کامل

Clickable, photoreactive inhibitors to probe the active site microenvironment of fatty acid amide hydrolase().

Fatty acid amide hydrolase (FAAH) is an integral membrane enzyme that degrades the endocannabinoid anandamide (AEA) and several other bioactive lipid amides. The catalytic mechanism of FAAH has been largely elucidated, and structural models of the enzyme suggest that it may recruit its hydrophobic substrates directly from the lipid bilayer of the cell. Testing this hypothesis, however, requires...

متن کامل

AIG1 and ADTRP are Atypical Integral Membrane Hydrolases that Degrade Bioactive FAHFAs

Enzyme classes may contain outlier members that share mechanistic, but not sequence or structural, relatedness with more common representatives. The functional annotation of such exceptional proteins can be challenging. Here, we use activity-based profiling to discover that the poorly characterized multipass transmembrane proteins AIG1 and ADTRP are atypical hydrolytic enzymes that depend on co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015